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Many scales in social measurement constructed to measure a single variable are 
nevertheless composed of subscales of items which measure different aspects of the 
variable.  Although the presence of subscales captures the complexity of a variable, 
and thereby increases the validity of the scale, technically, unidimensionality is 
compromised.  As a result, the presence of subscales has received substantial attention, 
and in particular, it has led to the formulation of a bifactor structure in which all 
subscales summarize a common variable and in addition, the items within each 
subscale also summarize an aspect unique to that subscale.  This paper shows that, with 
some common simplifying assumptions about a bifactor structure, the ratio of two 
calculations of coefficient α, one at the level of the items, the other at the level of the 
subscales, can be used to obtain (a) the proportion of true common variance, (b) the 
proportion of the true unique variance, (c) the proportion of the true common variance 
relative to the sum of the true common and unique variances, and (d) the summary 
correlation among subscales immediately corrected for attenuation due to error.  The 
paper suggests that because the calculations are relatively simple, they can be used to 
provide a more comprehensive summary of the properties of a scale with subscales 
than is possible with a single statistic such as some form of reliability coefficient.  
This paper provides an example in which a scholastic aptitude test consisting of 100 
items is composed of four subscales.  A small simulation study shows that when the 
assumptions are satisfied, the estimates of the variances are stable.

Abstract

Keywords: dimensionality, coefficient alpha, subscales, bifactor structure, components of 
variance
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Resumen 
 
 

En las mediciones sociales, muchas escalas construidas para medir una sola variable 
están, sin embargo, compuestas de subescalas de ítems que miden diferentes aspectos 
de la variable.  Si bien la presencia de subescalas captura la complejidad de una 
variable y, por lo tanto, aumenta la validez de la escala, técnicamente, la 
unidimensionalidad se ve comprometida.  Como resultado, la presencia de subescalas 
ha recibido una atención considerable y, más específicamente, ha llevado a la 
formulación de una estructura bifactorial en la cual todas las subescalas resumen una 
variable común y, en la que además, los ítems de cada subescala también resumen un 
aspecto único de dicha subescala.  El presente artículo muestra que, con algunos 
supuestos comunes simplificados sobre una estructura bifactorial, la proporción de 
dos cálculos del coeficiente α , uno a nivel de ítems y el otro a nivel de subescalas, 
puede usarse para obtener (a) la proporción de la varianza común verdadera, (b) la 
proporción de la varianza única verdadera, (c) la proporción de la varianza común 
verdadera relativa a la suma de las varianzas común y única verdaderas y (d) la 
correlación resumida entre subescalas inmediatamente corregida para la atenuación 
debida al error.  El artículo sugiere que, puesto que los cálculos son relativamente 
simples, pueden usarse para entregar un resumen de las propiedades de una escala 
con subescalas más amplio de lo que permite una única estadística, como por 
ejemplo, alguna forma de coeficiente de confiabilidad.  Este artículo entrega un 
ejemplo en el cual un test de aptitud académica, consistente en 100 ítems, se 
compone de cuatro subescalas.  Un pequeño estudio de simulación muestra que, 
cuando se satisfacen los supuestos, las estimaciones de las varianzas son estables. 
 
Palabras clave: dimensionalidad, coeficiente alfa, subescalas, estructura bifactorial, 
componentes de la varianza 

 
Many scales in psychology, education, health assessment, and social measurement in general, are 

constructed to measure a single variable.  Such scales are generally said to be unidimensional.  In all test 
theories (Lord & Novick, 1968) of unidimensional scales, each person is characterized by a single value 
and, in Classical Test Theory (CTT), by the total score.  Practical guides on test construction include 
advice on constructing items that are most likely to be statistically independent (Mehrens & Lehman, 
1991) in assessing the same variable.  The two main reasons that scales are composed of more than one 
statistically independent item are: one, the greater the number of items, the greater the number of 
potential total scores and therefore the greater the potential precision; and two, the greater the potential 
number of aspects of the same variable that are assessed, the greater the potential for validity. 

 
Many scales constructed to be unidimensional also have more than one item to assess each of 

multiple aspects of the variable.  The scale then explicitly has subscales of items.  Although by definition 
all subscales assess a common variable, each also assesses a variable unique to its aspect.  As an artifact, 
the scale is technically no longer unidimensional.  Nevertheless, because together they are considered to 
assess the common variable more validly than if there were only one item per aspect, the subscales with 
multiple items are retained. 

 
The presence of subscales lends itself to hypothesising a simple bifactor structure (Holzinger & 

Swineford, 1937), which has been reconsidered in related contexts (Chen, West, & Sousa, 2006; 
Gibbons & Hedecker, 1992; Raykov & Shrout, 2002; Reise, Moore, & Haviland, 2010; Reise, 
Morizot, & Hays, 2007; Zhang & Stout, 1999), and therefore to the analysis of the relative 
components of variance accounted for by the common and unique aspects.  Working from principles of 
CTT and the bifactor structure in which homogeneous unique variances for subscales and 
homogeneous covariances among all pairs of subscales is assumed, together with common simplifying 
assumptions of homogeneous and uncorrelated error variances, this paper shows that from the two 
calculations of the familiar coefficient α , one at the level of the items and one at the level of the 
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subscales, the true variance common to all subscales, the true variance unique to the subscales, and the 
error variance can be calculated.  As a result, four common indices of interest can be calculated: (a) the 
summary correlation between pairs of subscales corrected immediately for attenuation due to error; (b) 
the proportion of the total observed variance which is the sum of the common and unique subscale 
variances; (c) the proportion of the total variance which is the common variance; and (d) the proportion 
of the common variance relative to the sum of the common and unique variances. 

 
Under certain circumstances, the coefficient α  provides an estimate of the reliability of a scale 

defined in CTT as the ratio of true score to the total variance, the latter variance being the sum of true 
and error variance.  Many pitfalls in interpreting α  as a reliability, and recommendations to overcome 
these pitfalls, have been suggested in the literature (e.g., Cortina, 1993; Green, Lissitz, & Mulaik, 1977; 
Komaroff, 1997; McDonald, 1978; Rae, 2006: Raykov, 1998; Schmitt, 1996; Sijtsma, 2009; Van Zyl, 
Neudecker, & Nel, 2000; Zinbarg, Revelle, Yovel, & Li, 2005), since α ’s elaboration by Cronbach 
(1951) based on Guttman (1945). 

 
The connotations of the term reliability are evaluative and positive —the greater the reliability, the 

better.  It is perhaps because of this connotation, together with the attempt to find and suggest the ideal 
conceptualizations of reliability (e.g., Zinbarg et al., 2005), that there is such a vast literature on the 
topic.  This paper is not concerned with adding to that kind of literature.  Instead, this paper is 
concerned with exploiting the simple calculations of α  to provide the components of variance of a 
scale with a priori subscales when some simplifying assumptions to the subscale structure are made.  
Then, given this information, I leave it to the researcher, or to the reader, to make evaluative judgments 
for a particular scale in the relevant context, which might include further analyses.  Thus, this paper is 
concerned only incidentally with the CTT definition of reliability, which is noted in passing.  In 
addition, this paper recognizes that the focus in generalizability theory is on the decomposition of 
variance (Brennan, 1997).  However, it is suggested that because the calculation of α  is seemingly 
ubiquitous and the proposed calculations are relatively simple, they can be used to readily provide a 
summary of the components of variance of a scale with subscales. 

 
The paper formalizes and exploits the observation that α  calculated at the level of the original items 

is greater than when it is calculated at the level of the subscales (for example, Marais & Andrich, 2008; 
Rae, 2006; Smith, 2005; Zenisky, Hambleton, & Sireci, 2002).  The rest of the paper is structured as 
follows.  Section 2 summarizes the inferences from coefficient α when calculated at the level of the 
items and the level of the subscales, Section 3 shows the analyses and interpretation of the components 
of variance of a real data set, and Section 4 is a summary and discussion.  Because the paper 
concentrates on the ratio of α  calculated under two conditions, most derivations are provided for 
completeness in the Appendices.  

 
 

Formalization of a subscale structure and coefficient α  
 
In anticipation of the formalization of the subscale, with a bifactor structure, I will first summarize 

the calculation of α  where the assumptions of CTT (Gulliksen, 1950; Lord & Novick, 1968) are met 
and there is no subscale structure.  The observed score of a person on an item is resolved first into its 
true and error components and is then related to the usual similar resolution of the total score on a 
scale. 
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CTT variances in the standard case 
 
Let the observed score of person n on item i , Ii ,...,2,1= , be },...2,1,0{, inini mxx ∈  where im  is 

the maximum score of item i . Let nix  be resolved according to  
 

ninnix ετ +=  (1) 
 

where nτ  is the value on the variable τ  common to the responses of person n  to all items and niε  is 

the error component of this response to item i . nτ  is referred to in this paper as the common item true 
score.  (Although the use of the term “common” is strictly redundant here, it is used in anticipation of 
distinguishing it from a “unique” score in the context of a subscale structure).  Although fixed for 
person n , for a relevant population of persons, τ  and iε  are taken as random variables. Let iε  be 
uncorrelated with the person values, and be distributed homogeneously among items and normally with 
mean 0, variance ),0( 2

εσN .  Although not strictly necessary, for convenience, let the person 
distribution also be normally distributed.  Then 

 

),0(~ 2
εσε Ni , ),(~ 2

τσµτ N , ],[ iCOV ετ  = 0,  (2)  
and from Eqs. (1) and (2) 

][][][ ετ VVxV i += , (3) 

that is 222
ετ σσσ +=i , (4) 

 
where ][];[ 22 τσσ τ VxV ii ==  and ][2 εσε V= , in which, because of homogeneity, there is no need 
for the subscript i .  For convenience of exposition, the operator notation [.][.], COVV  is used in 

derivations and the notation 2σ  for resultant values. 

Let the total score of person n  on the scale composed of I  items be ∑
=
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Further, let  

∑
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Then, from (5) and (6), 

nnn ety += , (7) 
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where nt  is the CTT true score and ne  is the error on the scale as a whole for person n . nt  is referred 

to as the common scale true score to distinguish it from the common item true score nτ . From Eq. (7), 
 

.
],[][][

222
ety

eVtVyV
σσσ +=

+=
 (8) 

 
Eqs. (7) and (8) characterize CTT.  
 
From the assumptions that the errors are homogeneous across items and that 0],[ =jiCOV εε  for 

all ji, , from Eq. (6), 
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It will prove convenient to use Eq. (9) in the derivations and interpretations of the paper.  One 

immediate observation from Eq. (9) is that although the variance of the errors increases only linearly as 
a function of the number of items, the variance of the common scale true scores increases quadratically, 
ensuring that as the number of items increases, this variance increases relative to the error variance. 

 
The traditional (theoretical) reliability, notated yyρ  here, is defined by the ratio  

22
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σ
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+

== , (10) 

which is clearly the proportion of the common scale true score variance, 2
tσ , relative to the observed 

total score variance 2
yσ . 

 
The variables nnnin et ,,, ετ  are assumed continuous; therefore, the implication is that nix  and ny  

are also continuous.  However, because nix  generally takes on only integer values, often simply 0 and 1 

with dichotomously scored items, ny  also has discrete integer values and the implied continuity in Eq. 
(7) is violated.  I discuss this violation and one major implication later in the paper but, for the present, 
I assume that, as is done traditionally, the approximation of discrete for continuous scores is 
satisfactory. 
 
 
A review of the calculation of coefficient α  

 
For completeness, the derivation of the equation for calculating α , shown in full in Appendix A, 

begins with the resolution of the response to each item according to Eq. (1).  From Appendix A and 
Cronbach (1951), 



COMPONENTS OF VARIANCE OF SCALES WITH A SUBSCALE STRUCTURE

11

22

2

22

2
11

/][

][][

1 et

t

I

i
i

I

i
ni

IyV

xVxV

I
I

σσ
σ

σσ
σ

α
ετ

τ

+
=

+
=

−

−
=

∑∑
== . (11) 

 
Eq. (11) shows that when the assumptions of CTT are fully met, then α  provides a calculation of 

the reliability of CTT; otherwise, it is a lower bound (McDonald, 1978).  Eq. (11) also shows how the 
value of Ie /22

εσσ =  decreases, and therefore α  increases, as the number of items increases.  In this 
paper, I identify α  with the structure of the calculation of the left side of Eq. (11), and consider the 
consequences of such a calculation in the presence of subscales. 

 
I use the notation ][yV  for the denominator in the calculations of α  but to emphasize the structure 

in Eq. (11), I use ][
1
∑
=

I

i
ixV  for ][yV  in the numerator. 

 
 
Formalizing the subscales of a scale  

 
The bifactor structure is formalized at the item level, which requires a qualification of Eq. (1). 

Accordingly, resolve nix , giving 
 

niniinni cx εϑτ ++= , (12) 
 

where nτ  retains the same meaning as in Eq. (1), niϑ  is the value on the unique aspect of the variable 

of person n  to item i , ic  is a weight for item i  and niε  is again the error component in person n’s 
response to item i .  If each item assesses a unique aspect which is uncorrelated with the unique aspect 
of any other item, that is, there is no subscale structure, then the unique aspect of each item is absorbed 
into the error, nininiic εεϑ →+ , resulting in Eq. (1).  However, with a subscale structure, and 

assuming that si cc =  is the same value for all items within each subscale, the unique subscale variance 

can be separated from the error variance.  The result of this paper is that, further assuming that ccs =  
for all items between every subscale, c  can be estimated from two calculations of α .  It is clear that 
specifying siccc si ,∀==  is a strong simplifying assumption.  However, it is the estimation of c  
under such a simplifying assumption that permits a rapid overview of approximations of the 
components of variance among the subscales. 

 
In the first instance, and for purposes of exposition, retain the subscript s  in sc .  Then, let 

nssnns c ϑτβ += , (13) 
 
0≥sc , where nτ  is again the common, item true score for person n among subscales and is the same 

variable as in Eq. (1), and nsϑ  is the unique item score for all items in subscale s .  For convenience, 
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and because it has no error term, nsβ  is referred to as a unique subscale true score.  According to the 

bifactor structure 0],[],[ == wss COVCOV ϑϑτϑ  for all subscales ws, , giving 
 

.

],[][][
2222

2

sss

sss

c
VcVV

ϑτβ σσσ

ϑτβ

+=

+=
 (14) 

 
Again, although not strictly necessary, let sϑ  be normally distributed in the same population, 

),(~ 2
sss N ϑσµτ .  Further, without loss of generality and for purposes of identification, let 

 
22
sϑτ σσ =  (15) 

 
for all items within all subscales s.  Eq. (15) conveniently makes the value 2

sc  the proportion of the 

unique subscale variance 2
sϑσ  relative to the common item true score variance 2

τσ :

./)(/)( 2222222
ττβϑτβ σσσσσσ −=−= ssssc   In addition, Eq. (15) implies that the variances of items 

within and among subscales are homogeneous. 
 
Clearly, if 0≠sc , the case used in this paper, then taking all items of a scale together, 

unidimensionality is violated. In the derivations, the terms ][τV  and ][ sV ϑ  are maintained for clarity 

of exposition, but to simplify expressions, the numerical equivalent, 22
sϑτ σσ = , of Eq. (15) is applied in 

final expressions of derivations.  For the same reason, the subscript s  in sc  is retained and then ccs =  

is applied in final expressions. (Incidentally, 0<sc  can be taken, but because its effects appear as the 

square 2
sc , 0≥sc  is imposed for convenience, implying that subscales are not correlated negatively). 

 
Appendix B shows the calculations of the variance components which arise from Eqs. (12) and (13).  

For simplicity of exposition, assume first that the number of items K  is the same for all S  subscales; 
then, SKI = is the total number of items.  I show that this assumption can be relaxed. 

 
If SKI = , then from Eq. (9),  
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The correlation between items from different subscales 

 
Appendix B shows that swρ , the correlation between the subscale true scores of any pair of subscales 
s  and w  is  

222222

2

wwss
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Applying wsccc wsws ,,;222 ∀==== ϑϑτ σσσ , gives 

ws
csw ,,

1
1

2 ∀
+

=ρ . (18) 

 
Clearly, the larger the value of c , the smaller the correlation between two subscales from different 

subscales; if 0=c , the correlation is 1, unidimensionality prevails, and there is no effective subscale 
structure. In the case of just two subscales, swρ  is identical, conceptually and in value, to the 
correlation between two subscales corrected for attenuation because of error, that is, 

wwssswsw rrrc /)1/(1 2 =+=ρ  where swr  is an observed correlation between the subscales and 

wwss rr ,  are estimates of reliability of each subscale.  Given a single value of c  across all pairs of 

subscales makes swρ  a generalization of the correlation between two scales, corrected for error, and is a 
relevant result in and of itself for the purposes of this paper.  In addition, in this paper, and to contrast 
it with an observed or manifest correlation, swρ  is referred to as the latent correlation among subscales. 
 
 
Accounting for subscales in calculating α  

 
To account for the subscale structure, each subscale Sss ,...,2,1, =  takes the role of an item whose 

score is the sum of the scores of the original items in that subscale.  All the assumptions of CTT listed 
above are maintained at the subscale level.  Again, the formalization begins with the resolution of an 
item score. 

 
Thus, let the observed score nisx  of person n on item i of subscale s be resolved according to 
 

nisnssnnisnsnis cx εϑτεβ ++=+= , (19) 
 

where nisε  is the error component of item i of subscale s for person and 0],[ =issCOV ετ .  It is 

assumed that ),0(~ 2
εσε Nis  is homogeneous both among items within a subscale and among items 

from different subscales so that 2
εσ  is subscripted by neither s  nor i .  Even though it has the same 

distribution for all items, for purposes of exposition, I retain the subscripts i  and s  in isε . 
 
With K items per subscale, let person n ’s observed score on subscale S  be 

∑
=

=
K

i
nisns xy

1
. (20) 

 
Taking the sum of scores for each person within each subscale, and treating the resultant subscale 

scores as the units of analysis, is the mechanism for taking account of the subscale structure.  Then, the 
total score of person n on the scale is 
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Therefore, using the results in Eqs. (A2.4) – (A2.7) of Appendix B gives 

 (22) 

 
where  

2222
ϑσσ cSKu =  (23) 

 
is the sum of the unique variances across all subscales.  For the rest of the paper, 2

uσ  and 2
tσ  will be 

referred to respectively as the unique and common variances, with it being understood that these are 
true variances in the sense that they are not error variances.  Note from Eq. (22) that although each 
additional subscale adds unique variance 2222

ϑσσ cSKu =  only linearly as a function of S, each 

additional subscale adds to the common variance 2222
τσσ KSt =  quadratically. 

 
Accounting for a subscale structure when 0=c  and 0≠c  gives different values for α .  The 

equations are derived in Appendix C and are summarized in Table 1, which gives the numerators for 
four calculations of α .  Their identical denominators are shown in the last line of Table 1. 

 
The notation for each calculation of α  is also shown in Table 1.  The first column in the first row, 

wsc sw ,,1,0 ∀== ρ  (unidimensionality is satisfied) takes no account of subscales, is the standard 
case, and is notated simply as α .  The second column of the first row is again 0=c , which may be an 
empirical value, but the formula does take account of a subscale structure and is notated 0α .  The third 

column shows the relationship between α  and 0α .  In the first column of the second row, 0>c , but 

the formula takes no account of subscale structure and is notated cα .  In the second column of the 

second row, sc ∀> ,0 , the formula takes account of the subscale structure and is notated Sα .  The 

third column shows the relationship between cα  and Sα . 
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Table 1 
Conditions under which α  is calculated and its values 
 

 Not taking account of the subscale 
structure 

Taking account of the 
subscale structure 

Effect on α  

Standard case:  

0=sc , 1=swρ   2

2

y

t

σ
σ

α =  2

2

0
y

t

σ
σ

α =  0αα = . 

0>sc , 1<swρ  

2

22 )1/()1(

y
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c
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σ

σσ

α

−−+

=

 2

2

y

t
S σ

σ
α =  Sc αα >  

2222
euty σσσσ ++=  

 
The first row in Table 1 shows that if 0=c  (there is a subscale structure but with no unique 

subscale values) then α  has the same value whether or not a subscale structure is taken into account in 
its calculation.  In the data, there may be a slight difference in values from the two calculations due to 
different capitalizations of random chance relationships between items in some subscales, but it would 
be statistically 0.  Thus, the fact that α  calculated in the two different ways produces effectively the 
same value is ready evidence that, despite a structure in which subscales potentially assess different 
aspects, the statistical and empirical unidimensionality of the whole scale prevails. 

 

The second row of Table 1 shows that if 0>c  (unique subscale aspects), then Sc αα > .  This 
inequality explains the well-known observation mentioned earlier, which is that when there is a subscale 
structure, α  calculated at the item level is greater than when scores within subscales are summed and α  

is calculated at the subscale level.  The greater value of cα  arises from the addition of a factor of 2
uσ , the  

unique subscale variance, in the numerator.  In the case when the subscale structure is accounted for, this 
unique variance of the subscales is effectively summed with the error variance leaving only an expression 
involving the true item variance 2

tσ  in the numerator.  Because the expressions in the top row do not 

involve c  )0( =c  in either the numerator or the denominator, the values 22
0 / yt σσαα ==  are 

identical. However, although the expression in the second cell of the bottom row takes the same form 
22 / ytS σσα = , because the denominator in the bottom row does involve c , .0 Sααα ≠=  

 

The result 0, >> cSc αα  also makes clear why the standard calculation of α  ( cα ) does not 
indicate the degree of unidimensionality of a scale, which is one of the pitfalls in interpreting α .  If the 

calculated values show Sc αα > , then this inequality confirms unique subscale variance.  It is now 

possible to exploit the difference between cα  and Sα . 
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Recovering c  and swρ  
 
Rearranging Sc αα /  provides an estimate of c .  Applying Eq. (23) gives  
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giving 

)1/()1(1/ 2 −−=− SKKcSc αα , (25) 
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From 2c , wssw ,,∀ρ , is obtained directly from Eq. (18). 
 
As evident from Table 1, if 0>c , then Sc αα > .  Therefore, if 1>S , and because 

11 −>− KSK , Eq. (26) implies that if Sc αα > , then 02 >c , as required.  Clearly, if 1=S , 

then Sα  cannot be calculated, but of course, in that case there is no need to attempt to calculate it.  As 

indicated earlier, without loss of generality, take 2cc += . 
 
The requirement that each subscale have the same number of items can be relaxed. Let sk  be the 

number of items in subscale s. Then it can be shown that 

 (27) 
 
Note that if Kks ≠  for some s , Ss ,...,2,1= , then even if 0=c , αα <0 .  Thus, with 

unidimensionality, when the number of items per subscale is different, the value of α is reduced when 
items are formed into subscales and analyzed as higher order items.  However, because with a subscale 
structure, Sα  is reduced even further, Eq. (27) remains correct.  Very different numbers of items or 
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score points per subscale will make the scales with substantially more items or score points dominant in 
the calculations.  Therefore, although it is not necessary to have exactly the same number of items or 

score points per subscale, for 2c  to be interpreted confidently with the assumption of homogeneity of 
the variances of the subscales, the number of items or scores points per subscale needs to be very similar 
and reasonably large; for example, 25 or so dichotomous items per subscale or the equivalent number of 
score points (e.g., 12 polytomous items with a maximum score of 2).  In the illustrative example, the 
number of dichotomous items per subscale ranges from 23 to 27 and the formulae appear to work 
accurately. 

 

I now elaborate the interpretation of components of variance given the value of 2c . 
 

Simplifying cα  

From cα  in Table 1 and expanding ][yV , 

222

22 )1/()1(

eut

ut
c

SKKS
σσσ

σσ
α

++
−−+

= . (28) 

 
Taking the limit of )1/()1( −− SKK  with increasing number of items K , gives 
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where 1,1,/1]1/[]1[ >>∀<−− KSSSKK . 

 
Substituting S/1  for ]1/[]1[ −− SKK in Eq. (28) gives 

222
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c σσσ

σσ
α

++
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< . (30) 

 
Eq. (30) shows that cα  is the lower bound for the proportion of the sum of the common and 

unique variances relative to the sum of the common, unique, and error variances (that is, relative to the 
total variance).  For all practical purposes, it is this proportion.  For example, when 

SKSKSK /15.0483.0)/1/()/11(,2,15 =≈=−−== ...Thus, 

)/()( 22222
eututc σσσσσα +++≅ can be written. 

  



COMPONENTS OF VARIANCE OF SCALES WITH A SUBSCALE STRUCTURE

18

An interpretation of ratio cS αα /  

Let the ratio cS αα /  be denoted by Aα .  Then,   

.
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Invoking the limit of Eq. (29) gives 

22
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t
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+

>= . (32) 

 
For practical purposes and with a reasonably large number of items per subscale, 

)/( 222
uttA σσσα +≅ .  The numerator of Aα  is clearly the common variance and the denominator is 

the sum of the common and unique variances, making Aα  effectively the upper bound of the 
proportion of common variance relative to the common and unique variance, that is, the proportion of 
the non-error variance. 
 
 
Describing a scale with four indices 

 
As already indicated, there are many caveats in the literature for interpreting any calculation of α  as 

a reliability index.  These caveats seem to arise from the use of one value of α , which might be 
misleading in different ways in various situations.  It is suggested, therefore, that one of the 
complications in reporting and interpreting α  in general, and in particular in the presence of subscales, 
is to expect that a single value should be sufficient to summarize the properties, and especially some 
kind of reliability, of a scale.  This degree of simplification is not possible.  Therefore, to provide a 
comprehensive summary of the properties of a scale from the perspective of components of variance, it 
is suggested that all four indices derived above, both calculations of α , the proportion of the non-error 
variance that is common variance, and the latent correlation among subscales should all be reported. 

 
First, Sα , in which the unique subscale variance is absorbed into the error variance, is most 

analogous to α  when assumptions of CTT are met, and can be reported and interpreted usefully as the 
proportion of the total variance that is common, true variance.  Second, Aα , which indicates the 
proportion of common variance relative to the sum of the common and unique variances (and 
independent of error variance), can be interpreted usefully in that it indicates the degree of 
multidimensionality of the scale.  It may also be interpreted as a value of α  corrected for attenuation 
because of random errors in the responses to the items.  Third, cα , the value inflated by the unique 
variance and the one usually calculated, is also informative in the context of multiple indices as the 
proportion of common and unique variance.  Reporting and interpreting all three values, Sα , Aα , 

and cα , together with the value of the summary latent correlation ρ  among subscales, is likely to 
reduce misunderstandings that can result from the interpretation of the value of a single α  calculated 
in the presence of subscales.  Such reporting and interpreting is shown in the illustrative example.  
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Properties of the estimate of c   
 
In the derivations, estimates were not distinguished from parameter values, as it is understood that 

the calculations of α  from data provide estimates.  Therefore, the calculation of c  from either Eq. 
(25) or (26), which is a function of the ratio of two calculations of α , is also an estimate.  In this 
paper, there is no opportunity to consider the sampling properties of the estimate of c .  However, I 
provide some simulations with the illustrative example of a real data set. 

 
Before concluding this section, I return to the fact that the derivation of α  is based on the 

assumption of continuous variables even though the responses to items of a scale are generally scored 
with integers and as a result, the total score is an integer.  The key constraint that arises from this 
feature is that the total scores need to provide sufficient precision that they approximate continuity well 
enough for the formulae to work.  It seems that a maximum score on a scale of at least 25, with a 
distribution of persons ranging from at least three to a maximum of 22, provides sufficient accuracy to 
recover the indices derived in this paper. 

 
One important caveat is that the distribution must not be skewed artificially by having many persons 

with a maximum score and many others with scores close to the maximum, or near a score of 0.  In 
other words, it is important that the items and persons not be so poorly aligned that there is a large 
floor or ceiling effect, which can occur, for example, if a scale is designed for a normal population and 
administered to a clinical population, or the other way around.  However, this is an important 
constraint in the general in the application of CTT and the interpretation of reliability coefficients, no 
matter how they are calculated, because, with floor or ceiling effects, the intercorrelations among items 
are inflated and so too is any reliability coefficient.  
 
 
Data analysis  

 
This section illustrates the analysis of a real data set. Although this paper does not consider the 

statistical properties of the estimate of the variable c  in the derivations, to indicate the stability of the 
estimate with the example, a set of data is simulated from a normal distribution with the means, 
standard deviations, numbers of items per subscale, the range of item difficulties, and the value of c  
taking the values obtained from the real data.  Then, to elucidate the stability of the estimate of c , ten 
replications are generated and the mean and standard deviation of the estimates of c  are reported.  
 
 
Simulating discrete responses 

 
To parallel the discrete responses in the real example, simulated responses were generated according to 

the dichotomous Rasch model with the general class of Rasch models (Andersen, 1977; Andrich, 1978; 
Rasch, 1961; Wright & Masters, 1982).  The key assumptions of CTT and of Rasch models, namely 
local independence of responses, equal discrimination amongst items, and that the total score provides all 
information about a person’s response profile, are identical.  One important difference between CTT 
and the Rasch models is the specification of item parameters (difficulties in proficiency assessment).  In 
the simulations, these parameters were made equivalent to those from the dichotomous Rasch model 
analysis of the real data with the same number of items in each of the scales as in the real data.  Ten 
replications, with all parameters the same but with a different random seed, were conducted and the 
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mean and standard deviation of the relevant estimates reported.  I stress that the simulations are meant 
only to be illustrative, and not exhaustive.  There was no artificial skew in the real and simulated data. 

 
Because the derivations of this paper are based on CTT, it does not consider the distinctive 

properties of CTT, the models of Rasch measurement theory (RMT), and models of item response 
theory (IRT).  Instead the dichotomous Rasch model of RMT is employed only to simulate the 
responses, noting that its properties make it relevant for this purpose.  Using the nomenclature of CTT 
for the person true score, the probability of a dichotomous response 1,0=x  in the model is given by 

 

)exp(1
)exp(},;Pr{
in

in
inni xX

δτ
δτ

δβ
−+

−
== , (33) 

 
where nτ  is the true score of person n , and iδ  is the difficulty of item i . In the simulation of subscale 

properties, the subscale structure of Eq. (13) was taken to qualify nτ .  Thus, rather than Eq. (19) of 

CTT being used to generate an observed score xX ni=  from an additive parametric structure and a 
random component of Eq. (13), the non-linear probabilistic random component of Eq. (33) is used on 
the same parametric structure to generate the observed scores.  Thus, within each subscale, the 
dichotomous Rasch model holds, and between the subscales, the summary latent correlation is that of 
the real example. 
 
 
The Australian Scholastic Aptitude Test  

 
The Australian Scholastic Aptitude test (ASAT) is a 100 item multiple choice test constructed to 

cover four areas of scholastic achievement: Mathematics, Science, Humanities, and Social Sciences.  It 
was generally used at the Year 12 level to assess students who are applying to enter universities in 
Australia.  The full sample of ASAT responses analyzed in this paper were used for the common person 
equating of all Year 12 subjects (e.g., English literature, history, mathematics, physics) studied by 
students in preparation for university selection.  As an incentive to take the test seriously, a small 
percentage of each student’s total score on the ASAT was added to a student’s university entrance score.  
For this purpose, and for the purpose of scaling, the total score on the ASAT was used. 

 
The number of students for whom data were made available is a random sample of 1,000 students.  

However, 13 of the students did not have complete responses and were therefore left out of the analysis.  
The remaining sample consisted of 490 girls and 497 boys.  The maximum scores on the four scales 
ranged from 23 to 27 (Mathematics, 27; Natural Science, 23; Social Science 24; and Humanities, 26). 
Accordingly, in the estimation of c , Eq. (27), rather than Eq. (26), was used. 

 
Although the substantive areas of Mathematics, Natural Science, Social Science, and Humanities are 

clearly different, the students sitting for this test were all preparing for study at universities in Western 
Australia or in other parts of Australia.  Therefore, they were studying in each of these disciplines.  The 
items chosen were not focused on a specific Year 12 curriculum, although preparation from Year 12 
studies was expected.  Thus, once again, the hypothesis that students’ profiles on the four subscales 
could be summarized by a single number, which is evidence of unidimensionality, was reasonable.  
Nevertheless, there is also a clear subscale structure that assesses different aspects of the variable of 
scholastic aptitude.  Table 2 shows the results of the analysis of ASAT according to the above formulae 
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and the mean and standard deviation of the value of c in the simulation study, the statistic on which 
all other estimates are based. 

 
Table 2 
Three calculations of α , the subscales’ correlation in the ASAT, and a summary of 10 replications 
 

cα  ,Sα  Aα  ρ  

0.924 0.819 0.886 0.658 
c  Observed value 0.722 
10 Replications Mean 0.719 
  SD 0.027 

 
Table 2 shows first that Sc αα > , second, that the estimate of c  is relatively large (0.722), and 

third, from the standard deviations of values of c  for the 10 replications, that the observed value of 
0.772 for c  is very much significantly greater than 0.  From the perspective of the stability of the 
estimates, it is clear that the generating value of 0.722 is well within the 95% confidence limits 
indicated by the standard deviation of the estimated values of c  from the 10 replications. 

 
Table 2 also shows that because of a relatively large value for c  (0.722), the summary latent 

correlation between different subscales is a relatively low 0.658. Nevertheless, Aα  (the proportion of 
the scale common variance relative to the common and unique variance, that is, the proportion of the 
non-error variance), is a relatively high 0.9 (0.886).  This indicates that the subscales were, in general, 
correlated sufficiently highly that, together with the four subscales, the greatest component of variance 
is the true, common variance.  Recall that from Eq. (22), each additional subscale adds quadratically to 
the common variance but only linearly to the unique variance. 

 
This high proportion of true common variance of the scale suggests that for the purposes to which 

ASAT was put, using a single score was generally justifiable.  To consolidate the interpretation, I related 
the results of Table 2 to some of the derivations.  In particular, rather than considering only 
proportions of variance, it is possible to estimate the components of common variance, unique variance, 
and the error variances in terms of the variance of the observed total scores.  For this purpose, the 
relationships in Table 1 were used. 

 
First, from the value of Sα  and the value of the total variance 2

yσ  from the analysis, an estimate of 

the scale true variance 2
tσ  is readily available.  Specifically, 22

ySt σασ = . Second, from the value of 

cα  and its expression, and now a known value of 2
tσ  with known values of KS , , the estimate of the 

unique variance 2
uσ  can be calculated.  Finally, given these values, from Eq. (23), the error variance can 

be calculated.  Table 3 shows the results of these calculations.  It is again clear that the dominant 
component of variance is the common variance (212.523), and that the unique variance is relatively 
small (28.102) and not much greater than the relatively small error variance (18.873). 
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Table 3 
Components of variance of ASAT in the scale of the observed scores 
 

2
yσ  2

tσ  2
uσ  2

eσ  

259.528 212.523 28.102 18.873 
 
Considering the a priori structure of the subscales, and the knowledge that in the presence of scales 

the resultant value of α  can be inflated, the high value of cα  (0.924) on its own would not have been 
sufficient evidence to conclude that the total score is a reasonable summary of the majority of the 
students’ profiles.  However, in the context where students are prepared to answer all of the types of 
questions, the ASAT operated relatively unidimensionally, even though the subscales were composed of 
clearly very different substantive items. 

 
Nevertheless, at an individual level, there would be a minority for whom the total score does not 

summarize the profile of four scores.  Profiles that cannot be summarized by a single score and that 
contribute to a latent correlation less than 1, that is, contribute to some multidimensionality in the data 
as a whole, could be identified and those persons considered as special cases.  For example, the person 
with the most non-homogeneous profile was a girl whose scores in mathematics, science, social science 
and humanities were respectively 26, 4, 7, and 7.  This student has clearly performed excellently in 
mathematics and relatively poorly in the other subscales.  She may have been a native speaker of a 
language other than English.  In the application of ASAT at the time that this test was administered, 
care was taken to remove the scores of second-language speakers when the test was used for the purpose 
of equating test scores in other discipline areas. 
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Discussion 
 
This paper notes that despite the many exhortations cautioning the interpretation of coefficient α , 

it will continue to be used by practitioners with scales in which they summarize a respondent with a 
single summed score on the items.  This use is in part because α  is easy to calculate from one 
administration of a test and is an index of reliability within CTT if the data meet some relatively strong 
assumptions. 

 
This paper also points out that many scales are constructed to have subscales that assess different 

aspects of the common variable and therefore that the subscales will have unique variances.  Then, 
instead of focusing on the circumstances in which the index α  will be inflated or misleading in other 
ways already well covered in the literature, it qualifies its application and shows that from two 
calculations of α , one at the level of the original items and one at the level of the subscales, various 
components and proportions of variance can be estimated.  It is suggested that reporting these 
components, and interpreting them in the context of a particular scale in a particular context, is more 
likely to give comprehensive and accurate interpretations, rather than trying to use a single index for all 
circumstances or abandoning the use of α  altogether. 

 
Working with some underlying principles, a bifactor structure, and some specific and standard 

assumptions, this paper shows that calculated at the level of the items, α  gives the proportion of the 
true common and true unique variance relative to the total variance, and that calculated at the level of 
the subscales, it gives the proportion of true common variance relative to the total variance.  Two 
indices that qualify the interpretation of these two calculations of α  follow immediately: first, a latent 
correlation among the subscales, and second, the proportion of true common variance of the scale 
relative to the sum of this variance and the true unique subscale variance. 

 
This approach to using the indices is demonstrated with an empirical example, which has a clear 

subscale structure in which there is a predisposition to using a single score to summarize each student’s 
profile on the scale, and therefore implicitly assuming essentially a unidimensional variable.  The higher 
the value for each of the three indices of α , which reflect proportions of different components of 
common, unique, and error variance, and of the latent correlation among the subscales, the smaller the 
number of profiles that cannot be summarized by a total score.  Those that cannot be so summarized 
may be the most important profiles to consider from a substantive or clinical perspective.  A small 
simulation study with a subscale structure that paralleled the empirical data showed that the estimates of 
the indices developed in the paper were stable. 

 
There are of course limitations, broached in the paper, to the interpretation of these indices, which 

need to be emphasized.  First, because of the assumption of continuity of responses in its derivation, 
which is approximated by typically discrete responses, the distribution of the persons should not have 
an artificial skew in which large numbers of persons have minimum or maximum scores.  Second, 
although calculations can be carried out with varying numbers of items per subscale, the numbers of 
items (or the maximum scores when items within subscales are summed) should be relatively similar; 
otherwise, subscales with greater numbers of items dominate the indices and could lead to 
misinterpretations.  In the example, the scores ranged from 23 to 27 on each subscale, and the 
simulation that had exactly the same number of items in the subscales showed that with this variation of 
items, stable estimates prevailed.  Third, and related to the above constraints, is the assumption that the 
variances are relatively homogeneous among the subscales.  This assumption can of course be checked 
empirically.  Fourth, the assumption that the correlations among all pairs of subscales are homogeneous 
is also strong.  This too can be checked empirically.  Fifth, ideally the subscale structure is known in 
advance. In some cases it may be possible to derive a subscale structure from the data themselves using 
various techniques, such as factor analysis.  However, forming subscales based on such approaches risks 
capitalizing on chance. 
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The use of these indices and their interpretations in any data set for which they are deemed relevant 
do not preclude other calculations and investigations.  For example, those proposed by McDonald 
(1978), where different subscales may have different weights and with interpretations of reliability, can 
be carried out.  Another approach, which is based on structural equation modeling and considers 
different weights for subscales, has been proposed by Raykov and Shrout (2002), and a third approach, 
based on a bifactor structure as in this paper (Reise et al., 2007; Reise et al., 2010), applies the 
principles of IRT.  In many of these applications, the concept of reliability is retained.  By contrast, in 
generalizability theory (Brennan, 1997), the focus is on the components of variance.  The implications 
of the present paper are compatible with providing an understanding of a scale with subscales from the 
perspective of components of variance. 

 
Finally, given its history, its ubiquity, and the ease with which α  can be calculated, it seems it will 

continue to be used and interpreted, taking into account, more or less seriously, the caveats in the 
literature.  Although each of the indices, and related ones, summarizing the components of variance of 
subscales of a scale described in this paper can be calculated by other rationales, including 
generalizability theory, it is suggested that these components are more likely to be used if they can be 
calculated from just two values of α .  Taking into account the limitations, as a byproduct, 
misinterpretations of α  may be minimized and, in particular, the impression that it is an index of 
unidimensionality may be further countered. 
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Appendix A 
 

Calculation of an estimate of α  
 
The Appendix summarizes a derivation of α  which beings with the item level variances which is 

then used to formalize the construction of α  when account is taken of the subscale structure.  The 
assumptions are provided in the body of the paper. 

 
From Eq. (1) in the text 
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22][ ετ σσ +=ixV , (A2) 
 
From Eqs. (5), (6) and (16) in the text 
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from which  
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where, the left side of Eq. (A1.7) is the traditional calculation of coefficient α .  
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The numerator of ][αN  of α  
 
Because the denominator in all expressions is simply the variance of the total scores, and to simplify 

relationships among different calculations ofα  in the presence of a subscale structure, I focus on the 
numerator of the expression for α .  Therefore, from A1.7, it is possible to write 

 
][/][ yVN αα =  (A7) 

 
where 2][ tN σα = . (A8) 
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Appendix B 
 

The subscale structure and the relationships among the variances 
 
The additional assumptions in accounting for the subscale structure are provided in the body of the 

paper.  Although sccss ∀== ,;22
τϑ σσ , for purposes of exposition the identity of the subscale 

variance is retained up to the point in the exposition where a summation is applied which requires the 
identity for purposes of simplification.  
 
Variance of the total score in the presence of a subscale structure 

 

From Eq. (19) nisnssnnis cx εϑτ ++= .  
 
Therefore  
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That is, 
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where 2222

tsu cSK σσ =  is the total unique variance of all subscales. 
 

The latent correlation between two items from different subscales s and u  (independent of error) 
 

Let sK , wK , be the number of items in subscales s and w  respectively.  Then the total subscale 
scores (without error) are 
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Therefore,  
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and the latent correlation swρ  between two subscales s and w  is given by 
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With the assumptions wsccc wsws ,,;222 ∀==== ϑϑτ σσσ  
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Appendix C 
 

Four calculations of α for four different conditions 
 
1. α : Not taking into account a subscale structure when 0=sc . 

 
When 0=sc  and any subscale structure is ignored, this is effectively the standard case for the 

calculation of α .  However, to compare the formulae under different conditions, it must be considered 
that there are S subscales with K items each.  Therefore SKI =  and using Eq. (A1.9), the numerator 

][αN  is given by 
 

222222][ tKSIN σσσα ττ === , (C1) 
 
and 

][/2 yVtσα = . (C2) 
 
2. 0α  Taking into account a subscale structure when 0=c  

 
To calculate the numerator )( 0αN  when the subscale structure is taken into account, the sum of 

items within each subscale is used to give S subscales scores.  
 
Applying the structure of Eqs. (A2.5) and (A2.7) where subscales replace items, the numerator 
][ 0αN  takes the form 
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Therefore, 

][/20 yVtσα = . (C4) 
 
It is relevant to note that in this case, the value of c  plays no role in the numerator, whether it is 0 or 

not.  However, because it is 0, it also plays no role in the denominator where, from Eq. (A2.7), the 
denominator reduces to 22][ etyV σσ += . 
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3. cα : Not taking into account a subscale structure when 0≠sc  
 
If 0≠sc  and the subscale structure is not taken into account then there are SK discrete items.  

Applying Eqs. (A2.3) and (A2.7), 
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Therefore, 

][/))1/()1([ 22 yVSKKSutc −−+= σσα .  (C6) 
 

4 Sα : Taking into account a subscale structure when 0≠sc  
 
Taking account of the subscale structure when 0≠sc  again simply involves summing the items 

within a subscale to give S higher order items.  Applying Eqs. (A2.5) and (A2.7) to these S items gives 
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Therefore,  

][/2 yVtS σα = .  (C8) 
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